Curriculum: Energy Systems and Renewable Energies

Bachelor of Engineering, 7 semesters, Technische Hochschule Ingolstadt

7	7. Semester	Elective	Bachelor's Thesis and Seminar			Energy from Biomass and Biogenic Residues	Mobility within the Energy System
•	6. Semester	Project	Elective	Elective	Solar Buildings and Energy Consulting	Energy Markets and Coupling Sectors	Smart Grids and Wind Energy
ţ	5. Semester	Practical Seminar		Project and Quality Management			
2	4. Semester	Project: Design and Development	Control Engineering	Energy Distribution and CHP Plants	Building Technology and Smart Homes	Solar Energy Technologies	Cost and Investment Management
3	3. Semester	Product Development and CAD	Measurement Engineering	Machine Elements	Thermodynamics 2	Fluid Mechanics	Thermal Energy Technology and Power Plants
2	2. Semester	Engineering Mathematics 2	Material Science	Mechanics of Materials	Thermodynamics 1	Energy Storage	Entrepreneurship and Sustainability
1	1. Semester	Engineering Mathematics 1	Computer Science in Engineering	Basics of Mechanical Design	Statics	Electrical Engineering	Energy Systems and Energy Economics
Legen	iu.		odules Modules	General Basics Specialization Energy	3 Modules 11 Modules	Electives Personal and Practical Skills	3 Modules 4 Modules

Short description of the module contents

Entrepreneurship and Sustainability **I5 ECTS** - en -

- Sustainability and sustainable development
- Implementing Sustainability in companies
- Entrepreneurship
- Innovation management
- Practical Exercise in teamwork: Design Thinking (incl. Business Model)

Cost and Investment Management [5 ECTS] - en -

- Buyer and sales motivation
- **External Accounting**
- Internal Accounting
- Calculation methods of product costs

Project and Quality **Management** [5 ECTS] - en -

- **Project Definition and Organization** of Projects
- Project structure planning
- Risk management in projects, **FMEA**
- Quality management systems
- Process management

Engineering Mathematics 1 [5 ECTS] - en -

- **Complex Numbers**
- Sequences and Series
- **Functions**
- Differential and Integral Calculus with one variable
- **Ordinary Differential Equations**

Engineering Mathematics 2 15 ECTS1 - en -

- Series and Power Series
- Matrices
- System of Equations
- **Linear Transformations**
- Differential and Integral Calculus with several variables
- **Vector Analysis**

Computer Science in Engineering 15 ECTS1 - en -

- Fundamentals of Computer Science in Engineering and Digitalization Data Processing principles
- Computer Technology
- Algorithms and Programming
- Classes and Object Oriented Programming

Basics of Mechanical Design

- Fundamentals of Technical **Drawings and Mechanical Design**
- Projection methods
- Sectional representations, views
- Dimensioning, Dimensioning rules
- Deviations in shape and tolerance specifications

Statics 15 ECTS

- Analysis of mechanical structures, including trusses
- Forces, Moments, Resultants
- **Support Reactions**
- Internal forces and moments
- Spatial mechanical systems
- Center of gravity
- Friction

Mechanics of Materials 15 ECTS1

- Stress analysis and integrity of mechanical structures
- Stress Tensor, Mohr's Circle
- Area moments of Inertia
- Analysis of stress, strains and deformation under Tension, Bending, Torsion and Shear loads
- Strength of materials

Electrical Engineering

- Direct current circuits
- Electric Field
- Magnetic Field
- Alternating current circuits
- Three-phase system
- Electric machines
- Electronics

Material Science

[5 ECTS]

- **Fundamentals of Material Science**
- Structure of materials
- Reaction to temperature and mechanical influences
- Iron-based alloys
- Material testing methods
- Practical exercises in the laboratory

Thermodynamics 1

- Fundamentals of Thermodynamics
- Exchange and Conservation of Energy
- Exchange and Conservation of **Entropy**
- Changes in the state of fluids

Short description of the module contents

Thermodynamics 2 [5 ECTS]

Product

CAD

- Heat Transfer through conduction, convection and radiation
- Practical analysis of heat transfer problems
- Practical exercises in the laboratory

- Product Development Process
- **Development and** Solution and creativity techniques
 - Concepts and concept selectionPractical Mechanical Design
 - Training on a 3D-CAD program

Measurement Engineering [5 ECTS]

- Basic concepts
- Measurement errors
- Measurement of mechanical and electrical quantities
- Measurement of temperature and fluid-flow
- Special sensors
- Practical training in the laboratory

Control Engineering [5 ECTS]

- Control Loops
- Practical exercises with Matlab on the simulation of control loops
- Laplace Transformation
- Frequency response
- Closed-loop control analysis
- Control unit design
- Nonlinear control loops
- Stability

Machine Elements [5 ECTS]

- Analysis and Design of typical machine components
- Screws, pins and bolts; springs
- Axles and Shafts
- Shaft-hub connection
- Rolling bearings, gears, clutches
- Further machine elements

Fluid Mechanics [5 ECTS]

- Basic concepts; Fluid properties
- Hydrostatics and Aerostatics
- Conservation laws
- Internal and external flow
- Compressible flow, high Mach numbers
- Computational Fluid Dynamics
- Practical exercises in the laboratory

Project: Design and Development [5 ECTS]

- Team Project: students work together on a practical engineering problem
- Practical solving of a mechanical design and development problem
- Acquisition of practical and social skills; Project management;

Energy Systems and Energy Economics [5 ECTS] - en -

- Energy consumption and energy supply today (including impact on climate change)
- Economy, politics, law
- Practical exercises

Energy Storage [5 ECTS] - en -

- Basic concepts of Energy Storage Technologies
- Storage of thermal, electrical and chemical energy (including batteries, hydrogen and "green fuels")
- Storage of mechanical energy

Thermal Energy Technology and Power Plants [5 ECTS] - en -

- Basic concepts of Thermal Energy Technology
- Heat Generation
- Fundamentals of Turbomachinery
- Steam Power process, gas turbine
- Internal combustion engine
- Fuel Cell
- Practical exercises in the laboratory

Energy Distribution and CHP Plants [5 ECTS] - en -

- Combined Heat and Power Plants
 Use of new fuels in CHP plants
- Supply and distribution of electricity, heat and gas
- Operation of heat, gas and electricity networks

Building Technology and Smart Homes

[5 ECTS] - en -

- Building Technology (incl. heat demand calculation)
- Supply of thermal energy
- Heat Exchange Systems
- Air conditioning and ventilation technology
- Smart Home; Building control technology

Short description of the module contents

Solar Energy Technologies [5 ECTS] - en -

- Photovoltaic systems (planning, installation, economic efficiency)
- Solar heating of drinking water
- Thermal Solar Systems (components, design, costs)
- Simulation of solar systems
- Seminar: design of a solar system
- Practical exercises in the laboratory

Solar Buildings and Energy Consulting [5 ECTS] - en -

- Building Energy Act; practice
 Thermal bridges and calculation
- Recommendations for modernization
- Ventilation concepts
- Energy management in the building

Energy Markets and Coupling Sectors [5 ECTS] - en -

- Energy Markets (heat, electricity, mobility, system security) and their price regulations
- Renewable gas in the natural gas network
- System security of power grids
- Sector coupling technologies
- Technical and economical evaluation, smart markets

Smart Grids and Wind Energy [5 ECTS] - en -

- Network equipment, producers and consumers (incl. Smart Metering)
- Network stability strategies
- Future Energy Systems; Smart Grids
- Wind Energy; evaluation of wind data; wind turbine technology;

Energy from Biomass and Biogenic Residues [5 ECTS] - en -

- Greenhouse effect, climate change
- Renewable raw materials; Biogenic Residues
- Heat generation
- Power generation (combustion, thermal gasification, biogas)
- Fuels from renewable biomass
- Practical Seminar: Planning a bioenergy generation plant

Mobility within the Energy System [5 ECTS] - en -

- Future Mobility
- electricity demand for mobility (synthetic fuels, e-mobility, e-gas production)
- Legal framework
- Gas-Mobility (incl. hydrogen)
- Interaction with eletricity grids

Electives [15 ECTS]

- The electives serve for the individual profiling of the course according to your preferences
- You may select your electives from a module catalogue

Practical Seminar [2 ECTS] - en/de -

Block course on competencies that are related to the job profile of an engineer in "Energy systems and Renewable Energies"

Internship

[24 ECTS] - en/de -

- Internship in a company (in Germany or abroad)
- Independent, practical work on projects and problems whose topics are related to the degree
- Application and deepening of knowledge, methods and procedures that are taught and conveyed in the theoretical studies
- Acquisition of practical and social skills
- Insight into the structure and the way of working in companies

Project

[5 ECTS] - en/de -

- Team Project: students work together on a practical engineering problem from definition of the task to the presentation of the final results
- Acquisition of practical and social skills;
- Project and time management
- Presentation and documentation.

Bachelor's Thesis and Seminar [15 ECTS] - en/de -

- Graduation thesis in the field of Engineering
- Independent processing of a task according to scientific and engineering standards
- Scientific research and documentation techniques
- Scientific work

Curriculum: Energy Systems and Renewable Energies

4

Bachelor of Engineering, 7 semesters

	7. Semester	Elective [5 ECTS]	Bachelor's Thesis and Seminar [15 ECTS]			Energy from Biomass and Biogenic Residues [5 ECTS]	Mobility within the Energy System [5 ECTS]
	6. Semester	Project [5 ECTS]	Elective [5 ECTS]	Elective [5 ECTS]	Solar Buildings and Energy Consulting [5 ECTS]	Energy Markets and Coupling Sectors [5 ECTS]	Smart Grids and Wind Energy [5 ECTS]
	5. Semester	Practical Seminar [2 ECTS]		Project and Quality Management [4 ECTS]			
	4. Semester	Project: Design and Development [5 ECTS]	Control Engineering [5 ECTS]	Energy Distribution and CHP Plants [5 ECTS]	Building Technology and Smart Homes [5 ECTS]	Solar Energy Technologies [5 ECTS]	Cost and Investment Management [5 ECTS]
	3. Semester	Product Development and CAD [5 ECTS]	Measurement Engineering [5 ECTS]	Machine Elements [5 ECTS]	Thermodynamics 2 [5ECTS]	Fluid Mechanics [5ECTS]	Thermal Energy Technology and Power Plants [5ECTS]
	2. Semester	Engineering Mathematics 2 [5 ECTS]	Material Science [5 ECTS]	Mechanics of Materials [5 ECTS]	Thermodynamics 1 [5 ECTS]	Energy Storage [5 ECTS]	Entrepreneurship and Sustainability [5 ECTS]
	1. Semester	Engineering Mathematics 1 [5 ECTS]	Computer Science in Engineering [5 ECTS]	Basics of Mechanical Design [5 ECTS]	Statics [5 ECTS]	Electrical Engineering [5 ECTS]	Energy Systems and Energy Economics [5 ECTS]
						-	211
Leg	jend:	Management	3 Modules	General Basics	3 Modules	Electives	3 Modules
		General Engineering	13 Modules	Specialization Energy	11 Modules	Personal and Practical	Skills 4 Modules